Installed room sensor

Room Sensor Project: Part 2 – Infrastructure and Mounting

This post may contain affiliate links. Please see the disclaimer for more information.

This post is part of a series on this project. Here is the series so far:


Looking back, it seems to have been a ridiculously long time since my last room sensor post. It’s well over a year, but it doesn’t seem that long ago. This project has been majorly delayed by a few issues and generally hasn’t been top of my todo list. However, I’m now at the point where I have the prototype sensor installed and working. Actually, it’s been working for several months, but I hadn’t got around to writing it up! In this post I’ll mostly be detailing the infrastructure used to get power to the sensor. There will also be some discussion on the case and mounting as well as a few words on the software.

Finding a Case

It would have been really nice just to 3D print a case and mounting bracket for the sensors. Unfortunately, I don’t (yet) have a 3D printer and it was cheaper to buy cases than to get a 3D printing service to print them. I settled on a 100x60x25mm case and ordered 15 of them. Once they arrived I was able to fit all the electronics inside and cut a slot in the bottom for the DHT22 sensor. A dremel-like tool would have helped a lot here, but I managed to do it manually and it looks OK. I actually reversed the case so that the lid became the rear as this looks a little nicer and helped with the mounting of the components.

I also fitted a light sensor based on an LDR voltage divider circuit to the front of the case. Unfortunately I had issues with the ADC pin on the bare ESP8266 module I used for the prototype. It’s odd because I’ve had this working with the Wemos D1 modules before (which have their own voltage divider on the input also). In the end I didn’t manage to get this working and have resolved to replace the prototype board with a Wemos based one when I do the sensors for the rest of the house.

I drilled a hole in the front of the case for the PIR sensor and mounted the diffuser over the hole. The PIR board itself was hot glued to the reverse of this. This works really well – in fact if anything the sensor is a little too sensitive. I need to tweak the pots a little to dial this down.

You can see pictures from during the assembly as well as the fully assembled case below:

Main room sensor board mounted to case lid.
Main room sensor board mounted to case lid.
PIR difuser mounted to case (front view)
PIR diffuser mounted to case (front view)
PIR difuser mounted to case (top view)
PIR diffuser mounted to case (top view)
PIR sensor mounted to inside of case.
PIR sensor mounted to inside of case.
Side view of room sensor board showing power connections
Side view of room sensor board showing power connections
Fully assembled case (upside down)
Fully assembled case (upside down)
Fully assembled case (side view)
Fully assembled case (side view)
Fully assembled case (standing on the DHT sensor)
Fully assembled case (standing on the DHT sensor)

Power Setup and Wiring

In order to get power to the sensors I had decided on running 12V lines through the roof space of the house. These would then come down through the ceilings in the corner of each room for the sensors. The cables would be fed from a central distribution board mounted near the loft hatch in the ceiling. Since the power requirements for the 12 sensors I wish to eventually install are minimal a single 2A is enough to power the whole lot with some room to spare. Some pictures of the distribution board (before and after installation) are shown below:

Room sensor power distribution board (before installation)
Unwired room sensor power distribution board (before installation)
Room sensor power distribution board (post installation)
Room sensor power distribution board (post installation)

I had initially wanted to mount the power supply down in the ‘server rack’ and run the power up through an (existing) whole in the wall to the loft. However, after an abortive attempt at running a cable through the wall (in which I was foiled by pesky insulation and there was much swearing), I eventually came to the conclusion that mains power was needed in the roof space.

Time passes…

It took a while to really commit to and allocate funds to this option. Eventually the electrician came and installed four shiny new power points in the roof space just next to the loft hatch. Four power points is obviously overkill for this project. However, in the intervening time some other projects had come up for which the remaining plugs would be useful.

Once the power points were in place I ran the cabling for the 12V line to the room in which the sensor was to be installed and connected it all up. As if by magic power flowed and the sensor sprung into life! (barring various frustrating issues with loose connections).

I had quite an interesting time working out how to mount the sensor in the corner of the room. I initially stuck it up with 3M double sided sticky pads, but ended up pulling it up and down several times so that I ran out of these. Eventually I opted for good old fashioned blu-tack as a temporary solution! I’m intending to replace this with a 3D printed bracket which will fit the oddly shaped space between the case and the wall. This will allow the sensor to be attached much more permanently. However, for now the blu-tack does the job and proves the concept.

Installed room sensor
Installed room sensor

Relay Power Control

I mentioned above that I had installed several extra power sockets in the roof space for other projects. One of those other projects required putting a Raspberry Pi in the roof space. The other project is now completed and I’m hoping to document it soon. For this I pressed into duty my old Raspberry Pi Model B (the one with 512Mb of RAM). Although old, this hardware is sufficient for running a small Node-RED instance as well as performing it’s other intended duty.

This gave me a nice way to control the power supply to the room sensor distribution board and hence all the sensors. That meant that if a sensor were to go offline I could cycle the power remotely without having to climb up in the roof space. To do this I inserted a relay into the power 12V line between the power supply and the power distribution board.

The Raspberry Pi with the relay assembly
The Raspberry Pi with the relay assembly

I connected this to the normally closed input of the relay so that the relay must be switched on to kill the power. The state is then inverted in Node-RED. In this way the switch in Home Assistant shows as on most of the time. I only had 5V relays sitting in my parts box. So, I soldered up a quick transistor circuit on a breadboard to allow me to drive the relay from the 3.3V logic of the Pi. Doing this is left as an exercise for the reader, since I forgot to document what I built!

Driving the Relay in Node-RED

To drive the relay I use a variation of my MQTT discovery switch in Node-RED. This is implemented via the following flow:

The room sensor relay control flow
The room sensor relay control flow

The JSON for this is shown below (copy it and import into Node-RED):

[{"id":"e683c60f.71219","type":"tab","label":"Room Sensors","disabled":false,"info":""},{"id":"49f1f109.608fa","type":"rpi-gpio out","z":"e683c60f.71219","name":"Relay 2","pin":"13","set":true,"level":"0","freq":"","out":"out","x":760,"y":60,"wires":[]},{"id":"80843251.fcdf58","type":"mqtt in","z":"e683c60f.71219","name":"Room Sensors Command","topic":"homeassistant/switch/room_sensors/cmd","qos":"2","broker":"65d3656f.217c14","x":170,"y":80,"wires":[["afc07304.5d321"]]},{"id":"afc07304.5d321","type":"switch","z":"e683c60f.71219","name":"On or Off?","property":"payload","propertyType":"msg","rules":[{"t":"eq","v":"ON","vt":"str"},{"t":"eq","v":"OFF","vt":"str"}],"checkall":"false","repair":false,"outputs":2,"x":430,"y":80,"wires":[["a2b8666b.9e744","6c973ed5.7607f8"],["76f0cbf9.50415c","6c973ed5.7607f8"]]},{"id":"a2b8666b.9e744","type":"change","z":"e683c60f.71219","name":"ON","rules":[{"t":"set","p":"payload","pt":"msg","to":"0","tot":"str"}],"action":"","property":"","from":"","to":"","reg":false,"x":610,"y":60,"wires":[["49f1f109.608fa"]]},{"id":"76f0cbf9.50415c","type":"change","z":"e683c60f.71219","name":"OFF","rules":[{"t":"set","p":"payload","pt":"msg","to":"1","tot":"str"}],"action":"","property":"","from":"","to":"","reg":false,"x":610,"y":100,"wires":[["49f1f109.608fa"]]},{"id":"d673854.bac6478","type":"mqtt out","z":"e683c60f.71219","name":"Send Messages","topic":"","qos":"2","retain":"true","broker":"65d3656f.217c14","x":750,"y":240,"wires":[]},{"id":"95bdf49b.5a011","type":"function","z":"e683c60f.71219","name":"Format config messages","func":"var config = {\n    payload: {\n        name: \"Room Sensors\",\n        command_topic: \"homeassistant/switch/room_sensors/cmd\",\n    },\n    topic: \"homeassistant/switch/room_sensors/config\"\n};\nreturn config;","outputs":1,"noerr":0,"x":430,"y":240,"wires":[["d673854.bac6478"]]},{"id":"c45bb370.032b48","type":"inject","z":"e683c60f.71219","name":"@Startup","topic":"","payload":"","payloadType":"date","repeat":"","crontab":"","once":true,"onceDelay":"3","x":150,"y":240,"wires":[["95bdf49b.5a011"]]},{"id":"6c973ed5.7607f8","type":"function","z":"e683c60f.71219","name":"Set topic","func":"msg.topic = \"homeassistant/switch/room_sensors/state\";\nreturn msg;","outputs":1,"noerr":0,"x":620,"y":160,"wires":[["d673854.bac6478"]]},{"id":"65d3656f.217c14","type":"mqtt-broker","z":"","name":"Home Broker","broker":"mybroker.example.com","port":"1883","clientid":"","usetls":false,"compatmode":true,"keepalive":"60","cleansession":true,"birthTopic":"","birthQos":"0","birthPayload":"","closeTopic":"","closeQos":"0","closePayload":"","willTopic":"","willQos":"0","willPayload":""}]

Over the following months of usage, I noted several (infrequent) instances where the sensor stopped responding. In these cases it needed a manual (though remote controlled) power cycle. In order to automate this and so reduce downtime, I wrote the following Home Assistant automation:

  - alias: Auto-reset Room Sensors
    trigger:
      - platform: state
        entity_id: binary_sensor.prototype_sensor_status
        to: "off"
        for: "00:10:00"
    action:
      - service: switch.turn_off
        entity_id: switch.room_sensors
      - delay:
          seconds: 30
      - service: switch.turn_on
        entity_id: switch.room_sensors
      - service: notify.notify
        data_template:
          title: "Room Sensors Reset"
          message: "Device '{{ trigger.to_state.name }}' was offline for 10 minutes, room sensors reset."

Basically, this will trigger after the sensor has been offline for 10 minutes. Once triggered it will turn the sensor off and on again (with a 30 seconds delay in between). It will also send a notification to inform me that this has happened. I think this has been triggered twice and as a result the sensor hasn’t been unavailable for any length of time.

Software Changes

Since installing the prototype sensor, I haven’t actually been running my Micropython Room Sensor software on it. Instead I’ve been trying out ESPHome on this and another project, since it’s been getting a lot of attention in the HASS community recently. I specifically wanted to see if ESPHome was an easier/maintenance free option for these types of projects.

My take away from this is that ESPHome is really nice and very easy if you don’t want to do anything complicated. If all you have are a few sensors or actuators that you want to connect, it’s great! In fact it’s almost perfect for this kind of project. You can even do some moderately complicated data conversions and on device automation using the lambda syntax. For this reason, I’d put it in the same basket as the likes of ESPeasy. Although it has some advantages in comparison to other systems, especially if you are already running Home Assistant. Kudos to Otto Winter for coming up with such a great piece of software!

However, it does get more difficult when you want to more complicated things. I ran into some of these issues in my other project, which I’ll detail when I eventually write it up. For now ESPHome gets my wholehearted recommendation.

ESPHome Configuration

I especially like that since the configuration for ESPHome devices is just YAML it’s really easy to store in git. I haven’t got a cleaned up git repo for my projects ready to publish. However, since the configuration for this project is so simple, I can post the whole thing here:

esphome:
  name: room_sensor_prototype
  platform: ESP8266
  board: esp12e

wifi:
  ssid: 'my-wifi'
  password: 'supersecret'

mqtt:
  broker: 'mqtt.example.com'
  username: 'test'
  password: 'supersupersecret'

# Enable logging
logger:

ota:
  password: 'massivelysupersecret'

sensor:
  - platform: dht
    pin: 12
    model: AM2302
    temperature:
      name: "Test Temperature"
    humidity:
      name: "Test Humidity"
    update_interval: 15s

binary_sensor:
  - platform: status
    name: "Prototype Sensor Status"
  - platform: gpio
    pin: 2
    name: "Test Motion"
    device_class: motion

You’ll notice that I’m still using the MQTT transport rather that the native API component with the Home Assistant ESPHome component. This is mainly because I built this before the native API was released and I didn’t need to update it. I understand there are some advantages to using the native API, so I probably will try it at some point, especially if I want to try an esp-cam project.

What’s Next

So far, I’m really happy with the performance of the sensor. I’ve been using it in a few automations which I’m intending to detail in a further post. The next thing to do is build further sensors for the remainder of the house. In order to make this less error prone I’ve decided to design an adapter PCB in Kicad for the Wemos D1 Mini clones I’ve been using in other projects. This will get me away from the fiddling with bare ESP modules and hopefully mean that the light sensor will work.

As mentioned above, I also want to design a 3D printed bracket to fit the oddly shaped space in the corner behind the sensor. This will have to wait until I get a 3D printer, which will hopefully happen later this year.

Aside from that the only other job will be deploying the new sensors once they are built. This will mean running all the remaining power cables through the roof space, so lots of crawling around up there (yay! /s).

If you liked this post and want to see more, please consider subscribing to the mailing list (below) or the RSS feed. You can also follow me on Twitter. If you want to show your appreciation, feel free to buy me a coffee.

My Home Automation Setup

Welcome to this long awaited (by me at least) post about my Home Automation setup, specifically my Home Assistant configuration. It feels like I’ve been promising this post forever, so it’s great to finally deliver. Let’s get straight into it.

I’ve pushed my full Home Assistant configuration to GitLab and will be linking to various parts throughout this post. The config makes heavy use of secrets, to obscure sensitive details about my infrastructure (the sensitive files themselves are encrypted with git-crypt).

What is Home Assistant?

Home Assistant Logo

 

Unless you’ve had your head in the sand or just have no interest in home automation (why are you reading this?) you should know that Home Assistant (HASS) is an Open Source home automation server written in Python (3). What you might not know is that it has an awesome and very active set of developers, two weekly release cycle and a friendly and helpful community. At the time of writing it supports 668 different components. A component is the HASS term for an integration with an external device, tool or service. These components form the base for a device and manufactuer agnostic home automation system. Due to the sheer number of them, chances are you have several HASS compatible devices or service subscriptions, even if you are not into home automation.

I ended up trying out Home Assistant whilst looking for an alternative to OpenHAB. My reasons for switching away from OpenHAB were that I found the profusion of DSLs unweildy and the automation rules difficult to debug, so I never managed to get a satisfactorily working system. I haven’t followed the project since moving to HASS, so these issues might have improved. I would encourage anyone for whom HASS doesn’t appeal to head over and take a look.

After being initally sceptical that the YAML based configuration and automations in HASS would be flexible enough to do what I wanted, I was pleasently surprised by the level of functionality available at little effort. Things like Scenes, which had been tricky in OpenHAB, were easy in HASS! Overall Home Assistant just operates at a higher level of abstraction, which makes things simpler. Since I switched the project has gone from strength to strength and gets better with every release!

My Setup and Hardware

My Home Assistant Frontend

My Home Assistant Frontend

As previously documented Home Assistant runs in a VM on my main home server. It talks mostly to devices in an isolated subnet – so that my IoT devices are firewalled from both the main LAN and the internet at large. The firewall on this subnet blocks both incoming and outgoing traffic, preventing any of these devices from calling home without my say so. The only ports open are those required to allow the devices to speak to HASS or the MQTT server (plus DNS and DHCP to the firewall).

In terms of hardware, I currently have:

  • 3x Milight GU10 RGBW bulbs and the associated (crappy) wifi bridge (I actually have the older wifi bridge). These are located in the living room and provide the main overhead lighting as well as evening mood lighting when watching TV.
  • 2x Kankun SP3 wifi switches, for which I wrote the HASS platform integration. These are connected to some low power (500W) heaters which provide heating in the bedrooms.
  • 2x Raspberry Pis with various sensors connected (temperature/humidity and motion). These also have attached Webcams which stream to ZoneMinder via MJPG-Streamer. One of these also forms the RC-Switch gateway for the RF switches below.
  • 3x 433Mhz dumb RF switches connected to a couple of lamps and the kettle, these are actuated via an MQTT to RC-Switch bridge implemented in Node-RED running on the aforementioned RPi.
  • 2x home built sensors which publish sensor data (temperature, light and motion) from the bedrooms via MQTT.
  • 1x Cheap (and insecure) nondescript Chinese IP camera – yes, I did change the default password and this thing is well firewalled (incoming and outgoing). Again, this streams to ZoneMinder.

In addition, I have Home Assistant setup with my Kodi instance as a media player and use the DarkSky support for providing weather information. Presence detection is provided via OwnTracks and SNMP from my pfsense firewall.

For notifications, I’m using both SMTP and the native HTML5 notifications. I’m particularly pleased with the HTML5 notifications, which are a recent addition to my config. They are a bit of a pain to setup, but they finally spurred me on to getting a proper nginx reverse proxy set up for HASS and getting a proper TLS certificate with Let’s Encrypt. Once set up they a reliable, fast and look great on all our devices. I haven’t yet tried out the actions support, but it does open up some interesting possibilities for new automations.

One component which is conspiciously absent from my setup is any kind of physical control of the smart devices. Some devices (like the Kankun switches) will sync their state back to HASS when manually actuated, but most need to be directly addressed by HASS in order to prevent getting into an inconsistent state. Aside from implementing automations (detailed below), so that manual intervention isn’t required for common actions, we also use the HTTP Shortcuts app on our phones for reasonably quick switching of devices. The user experience is still not brilliant, so it would be good to have some physical switches for some things in the future.

Scripts and Automations

The ‘A’ in Home Automation is for automation. Up until now, I’ve described the infrastructure that provides me with (remote) Home Control. The real power of HASS is in its capability to act without direct user input, or to react to your behaviour (somewhat) intelligently. To this end I have several automations and scripts set up to perform various actions, based on what’s going on. In no particular order these are:

  • Execute an ‘Away Mode’ script when presence detection reports everyone has left. There is a corresponding ‘Deactivate Away Mode’ script for when someone returns home. The away mode script switches my cameras into motion detect mode (indoor cameras are also powered up, since they are powered down for privacy when we are home). It also sends a notification to tell us this has happened.
  • On weekday mornings turn on the lights if it is still dark outside and turn on the kettle (this will cause it to boil automatically if I remembered to set it up the night before). The lights get turned off a little while later. The kettle gets turned off at night, ready for the next day. This automation only executes if someone is home.
  • Switch the living room lights into Movie mode in the evening (after a certain time and if the sun has set), when pressing play in Kodi. If playback is paused or stopped the main lights come back up. I recently added transitions to these changes, which don’t work perfectly with the Milight bulbs but are better than the harsh change I had before.
  • Turn on the lights just before sunset, with an adjustment for cloud cover. Through a bit of experimentation I found that 20 mins before sunset was good for fine days and 40 mins was good for cloudy days. This automation only executes if someone is home.
  • Turn on the lights if someone comes home after sunset. This works really well with the combination presence detection via OwnTracks and SNMP – the lights are always on by the time we get in the house.
  • Send various notifications, mostly for motion detection if we are out or at certain times. Also sends me an email when HASS has an upgrade pending.
  • This isn’t really an automation, but I use the Generic Thermostat component to control the heaters in the bedrooms. This is filtered to switch off based on presence by a couple of template sensors which wrap the actual temperature sensors when someone is home and return 100°C when everyone is out, thus making sure the heaters stay off. I’m sure there is a better way to do this, but it works.
  • I also run AppDaemon, but currently only have a single app – OccuSim, which mimics our lighting patterns when we are away.

That’s pretty much it. Those automations cover most of our current use cases, but there are definately more to come and there will be much more as I add more devices to the setup.

The Future

There’s lots to add in future. In addition to solving the manual input problems, I’m very interested in replacing the unreliable RC-Switches with some Sonoff modules (running custom firmware) and adding some more for other appliances. I’m also interested in upgrading my Milight gateway to a homebuilt one based on the ESP8266/NRF24L01 modules. I also like the look off the Yeelight bulbs as a better alternative to Milight. In addition I’ll soon be moving my Kodi install to a Raspberry Pi which will allow me to play with some HDMI-CEC stuff. I also need to improve the design of my frontend pages in HASS.

I’ve looked into many of the available components within HASS for devices which may be applicable to my setup, including Z-Wave and the Zigbee based platforms (Hue, IKEA Tradfri, etc.). Many of these platforms either don’t meet my requirements in terms of security (most Z-Wave devices don’t appear to use encryption [not that Milight or RC-Switch are secure either, but at least they are only switching low power LEDs]), are too expensive (looking at you Hue) or have limited availability here in NZ (Z-Wave devices using the AU/NZ spectrum are limited in number and I can’t find anywhere shipping the Tradfri devices to NZ [for the record Tradfri fits my security requirements]). For these reasons, I’ve been working on more custom devices based on Arduino/MySensors (for battery powered devices) and ESP8266/Homie for mains powered devices. The key here will be building something reliable and getting the physical design right so it is robust and not unsightly. Some of the new Z-Wave Plus devices also look promising due to their encryption support (particularly the Aeotec devices e.g. this).

For all of the above, I’ll try to do write ups here when I can. It’s a pretty long list and should keep me going for quite some time!

I hope you’ve enjoyed reading this high level view of my home automation setup. I’ll happily receive suggestions for improvements in the comments, or field questions. You can follow me on Twitter if you are that way inclined or subscribe to the RSS or email updates (see sidebar). Thanks again for reading.

Monthly Update: April 2017

So I don’t actually have very much to say this month. Although I’ve done quite a lot, I don’t yet have much to show for it. All going well that should change soon.

I’ve now ‘completed’ my Home Assistant configuration and am currently working on the long awaited blog post. I put completed in air quotes there, because it will never really be finished. It is however in a state where I’m happy to share it, will all the known issues fixed.

The other project that I’ve been working on is the previously mentioned ESP8266 project, which is also nearing completion. Once it’s completed I will share the code and mention it here, but it’s unlikely to reach the stage of a full blog post, since I didn’t really document the electronics well enough as I went along!

That’s all for now, let’s see what happens in May.